
CH 1’86 Proceedings April 1986

The Trillium User Interface Design Environment

D. Austin Henderson, Jr.

intelligent Systems Laboratory
Xerox Palo Alto Research Center

Palo Alto, California 94304

Abstract

Trillium is a computer-based environment for
simulating and experimenting with interfaces for

simple machines. For the past four years it has been

use by Xerox designers for fast prototyping and testing

of interfaces for copiers and printers. This paper
defines the class of “functioning frame” interfaces

which Trillium is used to design, discusses the major

concerns that have driven the design of Trillium, and
describes the Trillium mechanisms chosen to satisfy
them.

Introduction

As machines become more complex, the design of
their user1 interfaces becomes more difficult. A good

methodology for improving these machine interfaces is

“cut and try” : build the interface, try it out on all

interested parties (most particularly the end users),
discover what its difficulties are, modify the design,

and repeat. This empirical approach works best if the

total time around this implementation cycle is short -
the shorter the better. The goal is so-called “fast

prototyping.” At Xerox, we wanted to explore

speeding up the design cycle by using a

computer-based design environment for prototyping
and simulating interfaces. The approach to be taken

was to build a computer-based “construction set”

populated with pieces appropriate for rapidly

assembling our class of “functioning frame” interfaces.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 i986 ACM O-89791-180-6/86/0400 - 0221 $00.75

Historical.Background

Five years ago at Xerox, the cycle time for interface
design and experiment was, for the most part, so long

that one or two cycles was the norm for our products.

These products were “simple” machines, copiers and

printers, with “simple” interfaces: mechanically-based
control panels with , lights, buttons and mimic

presentations of the machine and its parts;
typewriter-based recursive-decent menu systems; and
display-based graphic interfaces. However, the

functionality of the products was growing,, and the
interfaces (including display-based graphic interfaces)

were becoming more complex. Given this increasing
complexity, the production of good interfaces was
becoming more and more difficult to guarantee.

As a result, a few design sites had included

programmers in their design teams, and testing was
done on simulations of the interfaces, rather than on
final product itself. This reduced the design cycle time

from months to weeks and was clearly improving the

quality of product interfaces. However, it was

observed that, although formal passes around the cycle
would involve operability testing, often it was the case

that the designers themselves, on first seeing and using

their interface would immediately know how to
improve it. The resulting desire to “fix” it before

spending the resources to test it would shorten the

cycle still more. Most of the effort in this shortened
cycle was in the programming necessary to create the
interface simulations.

To tighten the design loop any further, we clearly

needed to remove the programming from the cycle.
Fortunately, the availability of personal computers
capable of running modern symbolic programming

environments provided the opportunity to experiment
1. In this paper. the word “user” refers to the person who mteractr wth the

Interface designed urrng Trillium. The word “derlgner” refers to the person who
mteracb wth Trillium Itself. The word “operator” is avoided because of carnes the
connotation that the role of the person interactmg wth the machIne IS the

“machme’s operator,” when interfaces for a broader class of users (repaw persons,
mstallen. sales persons) may all beepproprieteforderlgn usmg Trillium.

221

CH 1’86 Proceedings April 1986

with doing just that. In response to this opportunity, a
user interface design environment called Trillium was
built [Henderson, 19831. The rest of this paper discusses
Trillium, examining a few of the key issues which
influenced its designz.

“Functioning Frame” tnterfaces.

It will be helpful to ground the discussion in an

example of the class of interfaces that Trillium is

designed to design. Figure 1 shows a single frame from

an interface for a simple copier. This frame is one of
many making up the interface. It is composed of a
decorative border, a collection of controls, and an area

summarizing the description of the job. The number
pad controls the count of the number of copies that

should be made when the Start button is pressed. The

buttons in each of the columns control other features
of the job. Buttons are “pushed” by using the mouse.
The buttons are back-lit (simulated by inverting the

screen), with the lights “coming on” to indicate which

particular choice has been made. There are also some
restrictions on the settings of the features. For

example, no more than 99 copies can be made in any
given job and the copier does not make one-sided

copies from two-sided originals. When these
restrictions are violated, the interface takes some

appropriate action to notify the user (in one case by

refusing to take the expected action).

The frame in Figure 1 is one of many in this

interface, through which the operator must move
while using the machine. It shares a number of

common features with the other frames, such as the

artwork defining the border, the graphics defining the

controls, and the displays comprising the summary
area.

The term “Functioning Frame” will be used to
describe interfaces like the one just described - the

interfaces that Trillium can simulate. The key features

of this class are:

l frame based control panels
l active controls and displays presented in

two-dimensional
l concurrently active controls
l controlled movement among multiple frames

Other interfaces of this class include

keyboard-driven menu systems and simple

window-based editors.

2. There are many of there design issues. arang out of the task which at
addresses, the technology on which it IS built, and the skills and interests of users

who employ it. This short paper ten focus on only a few of the most important

Also. there are other design environments which address dafferent sets of these
issues. A longer paper (nn preparation) wdl explore these in much greeter detail
and wll dlrcusr the relataonrhap of Trllllum of other design enwronment

,:, :... . . i : . . >.:,.:‘.:..*“::.; .:,. ,. ,. .: ,.. ,. (: ..::, ‘., :. ;:,‘ ;.. .:

7 / Tr illinm v

kt o,t<

L

Figure 1: A single frame from an interface for a
multi-functional office machine.

Design environments for Functioning Frame

interfaces.

A fast prototyping environment for functioning
frame interfaces should have the follow characteristics:

From the context of Trillium’s conception (see
Historical Background above):

1. Design should not require programming:

Programming admits specifying much more than
interfaces, and is therefore much more fine-grained

than is needed for specifying just interfaces. Some

formalism for specifying the design which is more
specialized to design and reflects design abstractions is

needed.

2.Design should be fast: The time required to go

around the design/try cycle should be kept as short as

possible. Design changes should be immediately
affectable, and the ramifications of those changes
immediately experienced. A short cycle maintains the

designer’s focus, and permits more exploration of the

design space.

222

CH 1’86 Proceedings April 1986

3.The environment should support the design of

the interface’s behavior as well as its presentation:
Interfaces are active entities. Fast prototyping must

enable experimenting with the behavior of the
interface as well as with its visible presentation (looks).

From the nature of the interfaces to be designed3:

4. The environment should support

two-dimensional controls and displays: The interfaces
being designed are based on both physical and

electronic displays and controls. These controls must be

presented simultaneously and be concurrently active.
This will require good graphicsupport.

5.The environment should support multiple views<

(presentation and behavior) of the machine: Interfaces

break down the presentation of the functionality of

the machine into parts, not all of which may be visible

at once. For example, on a display-based

multi-functional off ice machine, separate sections may

be provided for copying and sending mail. Also, the
interface may have different modes: similar

presentations of the machine that behave in different

ways. For example, when the user is entering an

identification code, the number pad buttons control

change significance and the other buttons cease to

function.

6.The environment should support moving among

the views of the machine: The interface may have to
supply its user with some way to move around amongst

these different views: going deeper into a more

detailed description of the job, backing out to a higher

level, moving over to another view.

7. Designs should make a clear distinction between

machine state and presentation (controls and displays):

That the machine behaves implies that it has some sort

of internal state. Presentating these states to the user is

one of the important functions of the interface. An

interface may choose to present this state in many
different ways. Also, many different controls may

affect the same part of the state. It is therefore
important to make a distinction between the state of

the machine and its presentation.

8.Designs should support restrictions on, and

interactions between, parts of the state of the

machine: Certain states may be illegal. Certain

changes may occasion other changes. Means for

expressing these, and the actions that should be taken

when these are detected must be provided. Certain

changes may occasion other changes. Means for
expressing these dependencies must also be provided.

From the design process:

9.The environment should recognize similarity

among the pieces of the interfaces: An interface is
made up of many individual pieces for describing

controls, presentation and the interactions between
parts of the state. Segments are similar to one another,

but are different along distinguishable dimensions. (In

Figure 1, the buttons are all similar, but each has its
own label and effect). The environment should support
and make full use of this concept of “similarity through
controllable diversity.”

10. The environment should support the
construction and use of new.. design abstractions,

particularly composition and specialization: The

designers at a site develop their own local ways for

describing these segments of interfaces. In addition.

these design abstractions evolve. A design

environment with a fixed set of design abstractions is a
conservative force, restricting the designer to describe
interfaces with unchangeable terminology. In contrast,

an evolving set of abstractions supports a design

community in -tending its own language of, and
thinking about, designs. Two of the simplest

mechanisms ‘for creating new abstractions\ are

composition and specialization. Particular

configurations when used repeatedly take on a life of

their own, with the whole having its own

characteristics that determine the characteristics of its

parts. Specialization comes from the recognition of a

particular configuration of a’more general ,abstraction
as having a separate importance of its own.

11. The environment should support
incomplete specifications: Given a changing set of
design abstractions, it is important for a designer to be

able to create an instance of a design abstraction

without knowing all the details of its definition. Then
those details should be available from that instance for
modification as the design progresses.

12. The environment should support sharin9
of common parts of the interface: There is much that is
shared between different parts of any interface.of any

size. (In the example, the border and the Return button
are the same in all frames. Also, the graphic used in all
the buttons is the same.) While copying parts provides
easy construction, it does not support easy
modification of these shared parts.

3. Not all interfaces need all of,ther cipibilitics. Butthe environment must
enabk designers to create interfaces with thtse tlttmttkt chtrtcttristics, if for
no other reason than to establish that tht chosen inttrftct is prtfcrtblt.

223

CH I’86 Proceedings April 1986

Describing an interface in Trillium

A Trillium interface is composed of a collection of

frames. Figure 1 portrays one frame of many in the
interface of a multi-functional office machine, one of

which is presented at any given time while the
interface is operating. Each frame is composed of a
collection of items, each of which is of some itemtype.

In Figure 1, the collection of controls and displays

which supports entering the number of copies is a

single item -- a NumberPad. Each itemtype has a set of

characteristics. The number pad has a Placement, a

Cell, an InitialValue, and so on - 13 in all. Each

characteristic has a value type from which Trillium
determines how to manipulate values of that

characteristic. The value type of PrintBackground is
“grayshade” which indicates that the designer will
want a shade editor to manipulate values of this

characterisitc. Specific items are defined by supplying

values for some of these characteristics; values not
sied by the designer are filled in with the

characteristic’s default value. The graphic which is the

value of the Picture characteristic of the NumberPad is

defaulted to SimpleButtonBitmap.

The style is that of a child’s construction set; the set
has pieces (items) of the same kind (itemtype).
However, unlike the pieces in a construction set each of

which it unchangeable, Trillium items are variable

along certain dimensions (the characteristics). It is as
though the rods in the set, for example, instead of

coming in fixed lengths (and color, etc.), were
adjustable in length (and color, etc.). Items are

assembled within a frame to create both presentation

and behavior. A designer uses the editing tools in
Trillium to create, modify and experiment *with

operator interfaces. Thus the copier frame of Figure 1

is created by laying out a NumberPad, five

SetOfVerticalButton’s, and then adding some other
pieces which constraint the values set by those items.

This involves shifting rapidly between editing the

interface (designing) and trying it out (operating) to

evaluate the effect achieved. This process is supported

by interactive window-based editors, as shown in

Figure 2.

Itemtypes are either primitive or composite. An
item of a composite itemtype defines a sub-assembly of

other items; the composite item is expanded into these

sub-items. A NumberPad has as subitems twelve

buttons of various itemtypes, a PrintRegion, and a

Numericlnitializer; a button has as subitems a Picture

depicting the button, a LineOfText for its label, and a

sensor detecting when that area- of the screen is
“touched” with the mouse The substance of the

‘Figure 2: A portion of the Trillium screen containing
an editor for a NumberPad showing its
characteristics and their values, and a shade editor
being used to modify one of those values.

composite itemtype, therefore, is an explicit
description of how the characteristics of the composite

item determine the number and individual

characteristics of the sub-items of which it is composed.

A (little) language of composition is used in making the
descriptions. A NumberPad is described in this

language as having a characteristic named LabelFont

(among others) for controlling the font used in

labelling the buttons, and as being composed of

(among the other subitems) ten NumberButtons, each
of which has, as the value of its characteristic for

controlling the label, just exactly the value of the
LabelFont characteristic of the NumberPad. figure 3

shows part of the cascade of items resulting from the
expansion of a NumberPad. Trillium also includes

editors for manipulating the descriptions of itemtypes,

as weel as some simple tools for infering the

description of a composite itemtype from an example -

a set of items which together would be the expansion

of an item of the new composite itemtype.

224

CHl’86 Proceedings April 1986

Tr illinm
An item defines a Wee of subparts

: //I\\

whose leaves are primitives -C

Figure 3: ’ Part of the cascade of items resulting from
the expansion of a NumberPad.

the Trillium Machine

The presentation and behavior of a Trillium
interface is defined by the behavior of the items that
make up its frames. A composite item derives all its

presentation and behavior from its sub-items; primitive
items have their presentation and behavior built in.
The primitive itemtypes have built into them (as
functions in the underlying programming language,
Interlisp-D) the visible and behavioral description of
the interface. This presentation and behavior is

actually realized by an interpreter of the interface, the
“Trillium machine.” As it “runs” the interface, the
Trillium machine need only look at the primitive

sub-items resulting from the expansion of all the items
in the frame currently being presented.

While running the interface, the Trillium machine
creates and modifies a data structure representing the
state of the machine being simulated. The state of the

machine is given by two things: the frame stack - a
pushdown stack of frames which have been traversed
to get to the current (top of stack) frame; and a
collection of cells, each of which has a name and holds
a value (a statevariable).

The primitive items are divided into six kinds: each
kind has a different protocol to which it must respond.
The behavior of the interface is determined by the

responses of the primitive items to the messages in
these protocols.

The first three kinds of primitive item deal with the

presentation of the machine:

artwork: the static graphics of the interface.
Borders are artwork, as are the pictures which give the

illusion of a button.

sensors: items which sense activity in the “world”

around the interface, and take some action as a result;
actions change the state of the machine, either by

changing the-frame stack (push - go deeper, pop - go
back, or move - go sideways to another frame) or by
attempting to change the value of cell. There are
sensors which detect the mouse button being pushed

within a certain rectangular region of the display; and

others which detect the passage of time.

displayers: items which reflect the values of

cells onto the display. The Lights “behind” buttons are
displayers, as is the PrintRegion in the NumberPad and

the PrintRegions making up the summary area.

The second three kinds deal with the behavior of
the machine:

initializations: items defining actions to be taken
on entry to a frame. The cell referenced by the

NumberPad is initialized by a SetlnitialValue which is a
sub-item of that NumberPad.

inhibitors: items defining restrictions on the
values which a cell may take. The cell referenced by

the NumberPad has a NumericChecker on it which

refuses values over 99; the Sidedness.of.Output cell has
an Interaction inhibitor on it which prevents it from
taking the value 1 when the Sidedness.of.lnput cell has

value 2.

implications: items defining actions which must
be carried out to propagate effects. The
Sidedness.of.lnput cell has a ConditionalPropogator
implication on it which sets the value of the

Sidedness.of.Output cell to 2 whenever the value of
Sidedness.of.lnput cell is changed to 2.

The Trillium Machine runs a frame by looking at all

the primitive items in the frame -the items which are
the leaves of the tree of the expansion of composites
(see Figure 3).

225

CH 1’86 Proceedings April 1986

The Trillium Machine works as follows:
0 on entry to a frame:

0 run each initialization (initializes the

machine state for that frame).
l run each artwork (sets up the static

graphic background for the frame).
l run each displayer (presents the values of

the cells).
l until the state indicates that it is time to

change frames, repeatedly:
l run each sensor (senses the world)

and actions are taken (responds to

the sensors).
0 to take an action, either:

0 call for a frame change - push (go

deeper), pop (go back), or move (go
sideways); this is done by setting the

indicator in the state which is tested in the

sensor loop (see above), or
0 attempt to change the value of a cell:

do nothing if the new value is the

same as the value that is there

(prevents useless changes, and breaks

loops in propagating values among
mutually constrained cells).

run each inhibitor associated with the

cell (check that the value is

acceptable).

set the new value into the cell (the

change is finally made).
run each displayer associated with the

cell (presents the new value of the
cell).

run each implication associated with

the cell (propagates effects of the

change by taking further actions).

Trillium’s Language of Design

Because presentation and behavior are
determined entirely by the assembly of items of

particular itemtypes, the language of design within

Trillium is determined by the collection of itemtypes.
One advantage of this is that the language can evolve

by creating and modifying itemtypes. To support such

evolution, designers are given tools to create new

composite itemtypes. Also, new primitive itemtypes
can be added by the supporters (programming in

Interlisp-D), thus extending the very nature of the
interfaces being described (eg. to handle new input

devices - dials, or output devices - color display). This

evolution of the terminology of design reflects

conceptual development within the design community.
For example, over time, the notion of NumberPad

might change to reflect new requirements on design,
such as that the layout of the buttons be variable to

permit the NumberPad embedding in physical spaces

of differing shape and size.

Sharing parts of a design

To share information, any frame can be given
other frames, called superframes, which act as its

backdrop. Superframes can have items of all kinds iR
them, so they impart behavior as well as presentation.

Thus the frame of Figure 1 contains the buttons and
the number pad, and has two superframes: the Border

frame which contains the artwork around the edge,
and the ChangeFrameButton label Return (this insures

that it is consistently in the same place in all frames);
and the Summary frame, containing the PrintRegions

and artwork of the summary.

The sharing of graphical information (such as
bitmaps) and reference infomration (such as colors) is

accomplished with the use of service frames. These
frames are used solely for storing information about

shared items, and are not seen by the user during the
operation of the interface. By changing these

referenced items, all the items which refer to them are
indirectly changed in concert, thereby maintaining

consistency.

Trillium as a design environment for Functioning
Frame interfaces

The criteria set out earlier for a design
environment for Function Frame interfaces can now be
matched against Trillium’sstructure and capabilities:

l.Design should not require programming: In
most cases, it doesn’t. Items are just ’ placed

appropriately, and they interact through the cells they
reference. The behavior is built into the primitive items

into which they expand.

2. Design should be fast: Creating new items takes

at most minutes. The elapsed time from completion of

a bit of design to experimenting with the effect is the
time taken to move the fingCr on the mouse from the

design button to the one that requests that the
interface be run.

3.The environment should support the design of

the interface’s behavior as well as its presentation:
Five of the six kinds of primitive item have active
behavior built in. Composites have whatever behavior

their sub-items have. Interacting behaviors (eg. the
interactions of the various functions of a NumberPad)
result in the higher level abstractions encompassing
more complex behaviors.

226

Cl-l 1’86 Proceedings April 1986

4. The environment should SUDDOrt

two-dimensional controls and displays: It does because
the presentation primitive kinds (artwork, sensors and

displayers) do so (see more below, concerning the
embedding of Trillium in interlisp-D.)

5.The environment should support multiple views
(presentation and behavior) of the machine: Frame

support different views of the same collection of cells.

6. The environment should support moving among

the views of the machine: The frame stack supports
motion among frames.

7. Designs should make clear distinction between

machine state and presentation (controls and displayT

The presentation primitive kinds (artwork, sensors and
displayers) are distinct from the behavior primitive
kinds (initiations, inhibitors and implications)

8. Desiqns should support restrictions on, and
interactions between, parts of the state of the

machine: The inhibitors and implications do this.

9.The environment should recoqnize similaritv

amona the pieces of the interfaces: Items are instances

of itemtypes. Itemtypes capture similarity through
their different characteristics.

10. The environment should SUDDO~~ the

construction and use of new design abstractions,
particularly composition and specialization:

Composite itemtypes capture constrained sets of
sub-items as forming interesting abstractions.
Specialization is achieved ,by having a more general

item be the sole sub-item of the specialization,
masking some of the variability by setting the values of
some of the characteristics of the more general

abstraction within the expansion process.

11. The environment should support
incomplete specifications: Characteristics of itemtypes
have default values which are used in items when

values are not explicitly specified by the designer.
When initially created (as opposed to copied), all of the
characteristics have default values. The designer

creates an item to learn what its characteristics are, and
then by experimenting with the values, discovers the
range of its functionality.

12. The environment should support sharing
of common parts of the interface: Superframes may be

shared among other frames. Service frames provide for
sharing of information in terms of which other items
are defined.

In addition to meeting these criteria, the
acceptance and use of Trillium within Xerox argues
that it is a successful design environment for

Functioning Frame interfaces. Trillium is in use at more
than half a dozen sites within Xerox located on two
continents. Most of the interfaces for the next

generation of machines has been affected by
experiments using Trillium. Some of them have been
entirely designed using the tool. In one case,

automatic transportation of interface designs out of
the (Lisp-based) Trillium design environment into the
final (non-Lisp) product has even been achieveda.

In short, the design of Trillium has been driven by

the needs of fast prototyping, the interfaces to be
designed, and the design process itself. By restricting
attention to only the “Functioning Frame” interfaces,
Trillium provides designers with a powerful tool for
fast prototyping. This tool is in use with Xerox for
designing interfaces for copies and printers. The ability

to fast prototype has changed the quality of interfaces
produced by both permitting early experience with the
interface to expose problems with the design, and by

permitting exploration of more of the space of possible
designs.

Acknowledgements

Although originating from research at Xerox
PARC, Trillium is now used, maintained and enhanced
by the Trillium Community, an informal confederation

of designers, supporters, trainers, researchers and
management from many organizations within Xerox,
all of whom are responsible for making Trillium what it

is today. Also, my thanks to Bill Anderson for

commenting on an earlier draft of this paper.

References

Henderson, D. Austin, Jr., Trillium: A design
Environment for Copier Interfaces, videotape, CHl’83,
Boston, MA. December, 1983.

4. Tr~lltum II wntten sn lnterhsp-0, runn~na on the Xerox 1100 seraes

procesrorr. Interlap- prowder tnteractwe graphlcr. rymbollc reprerentatlon. and

an “escape clause” to programmmg when appropriate Tnllum Itemtypes are not
available.

227

